Dispersive Blow up for Nonlinear Schrödinger Equations Revisited
نویسنده
چکیده
The possibility of finite-time, dispersive blow up for nonlinear equations of Schrödinger type is revisited. This mathematical phenomena is one of the possible explanations for oceanic and optical rogue waves. In dimension one, the possibility of dispersive blow up for nonlinear Schrödinger equations already appears in [9]. In the present work, the existing results are extended in several ways. In one direction, the theory is broadened to include the Davey-Stewartson and Gross-Pitaevskii equations. In another, dispersive blow up is shown to obtain for nonlinear Schrödinger equations in spatial dimensions larger than one and for more general power-law nonlinearities. As a by-product of our analysis, a sharp global smoothing estimate for the integral term appearing in Duhamel’s formula is obtained. Résumé. Nous revisitons la possibilité d’apparition de singularités dispersives (dispersive blow-up) pour des solutions d’équations de Schrödinger non linéaires. Ce phénomène mathématique pourrait être une explication pour l’apparition des “vagues scélérates” (rogue waves) en océanographie et optique non linéaire. La possibilité de singularités dispersives pour des équations de Schrödinger non linéaires en dimension spatiale un a été prouvée dans [9]. Ces résultats sont étendus ici dans plusieurs directions. D’une part la théorie est étendue à des équations de Schrödinger en dimension spatiale quelconque, avec des non-linéarités de type puissance générales. D’autre part nous traitons également le cas des systèmes de Davey-Stewartson et de l’équation de GrossPitaevskii. Un sous-produit de notre analyse est un effet de lissage global précis pour le terme intégral de la représentation de Duhamel.
منابع مشابه
On the blow-up threshold for weakly coupled nonlinear Schrödinger equations
We study the Cauchy problem for a system of two coupled nonlinear focusing Schrödinger equations arising in nonlinear optics. We discuss when the solutions are global in time or blow-up in finite time. Some results, in dependence of the data of the problem, are proved; in particular we give a bound, depending on the coupling parameter, for the blow-up threshold. 2000 Mathematics Subject Classif...
متن کاملChanging blow-up time in nonlinear Schrödinger equations
Abstract Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic poten...
متن کاملA note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations
In this note we give an alternative, shorter proof of the classical result of Berestycki and Cazenave on the instability by blow-up for the standing waves of some nonlinear Schrödinger equations.
متن کاملStanding waves in nonlinear Schrödinger equations
In the theory of nonlinear Schrödinger equations, it is expected that the solutions will either spread out because of the dispersive effect of the linear part of the equation or concentrate at one or several points because of nonlinear effects. In some remarkable cases, these behaviors counterbalance and special solutions that neither disperse nor focus appear, the so-called standing waves. For...
متن کاملSolitary and Self-similar Solutions of Two-component System of Nonlinear Schrödinger Equations
Conventionally, to learn wave collapse and optical turbulence, one must study finite-time blow-up solutions of one-component self-focusing nonlinear Schrödinger equations (NLSE). Here we consider simultaneous blow-up solutions of two-component system of self-focusing NLSE. By studying the associated self-similar solutions, we prove two components of solutions blow up at the same time. These sel...
متن کامل